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Single molecule spectroscopy ...

Main (biological) motivation:

* Molecular interactions

* Enzymatic activity

* Reaction kinetics

» Conformational dynamics

* Molecular degrees of freedom

- Alterations in changing chemical background

* Probing the biological function of macromolecules

- Allows identification, sorting & quantitatively comparision of
subpopulations in ensembles
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The dimensions ...
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FRET allows:
* the observation in the nm regime
- studying the molecular structure (e.g. protein folding)
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FRET ...

Forster Resonance Energy Transfer

Identified by Theodor Forster in 1946.

> FRET relies on the distance-dependent energy transfer between a
donor flourophore and acceptor flourophore.

- FRET is sensitive to distance information and radiometric nature
of measurement as well.

- Complex statistical description of the data not necessary, as the
two instantaneous signals can be compared directly.
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Jablonski Diagram ...
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FRET's Jablonski Diagram ...
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FRET mechanism ...

Energy is transferred non-radiatively from an excited flourophore
(donor) to another chromophore (acceptor).

- to the typical excited lifetime a new tferm is intfroduced:
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Transfer rate keper dependent on the different properties in the
donor / acceptor / donor+acceptor system:
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FRET mechanism ...

Key aspect for FRET is the dependence of the energy transfer rate
on the spatial distance between donor and acceptor.
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Experimental determination of the
transter efficiency in the FRET

system:
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Schematic FRET ...
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Problems using FRET ...

Reference value of unperturbed lifetime mostly not known

R is of great interest, but some parameters in R might change during

experiment (e.g. translocations) making data interpretation difficult.
- Central factor is the orientation factor k, but tabulated
values not always correct.

Donor - acceptor stocihiometry needs to be taken into account as well.

Using FRET two challenges arise:
* the formalism must be appropriate for quantifying FRET
under conditions of abitrary, unknown, intermolecular +
intframolecular stoichiometries, distributions and
environments.
- continuous methods of observation are desirable.
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Molecule detection schemes ...

Intramolecular
FRET

Intermolecular
FRET
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Fig. 1. Labeling schemes (left) and physical observables (right). (A) Localiza-
tion of a macromolecule labeled with a single fluorophore F with nanometer
accuracy. The point-spread-function (PSF) can be localized within a few
tenths of a nanometer. (B) Colocalization of two macromolecules labeled
with two noninteracting fluorophores, F, and F,. Their distance can be
measured by subtracting the center positions of the two PSFs. (C) Intramo-
lecular detection of conformational changes by spFRET. D and A are donor
and acceptor; I and [, are donor and acceptor emission intensities; ¢ is time,
(D) Dynamic colocalization and detection of association or dissociation by
intermolecular spFRET. Donor and acceptor intensities are anticorrelated
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both in (C) and (D). (E) The orientation of a single immobilized dipole can be
determined by modulating the excitation polarization. The fluorescence
emission follows the angle modulation. (F) The orientational freedom of
motion of a tethered fluorophore can be measured by modulating the
excitation polarization and analyzing the emission at orthogonal s and p
polarization detectors. I and [, are emission intensities of s and p detectors.
(G) lon channel labeled with a fluorescence indicator I. Fluctuations in its
intensity /, report on localion concentration changes. (H) Combination of (C)
and (G). D and A report on conformational changes whereas | reports on ion
Flue.

Ion channel

measurement
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Intramolecular FRET ...
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Intramolecular FRET ...

Observation of
single molecule
reaction dynamics in
Time dependent
chemical & physical
environment.
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Intermolecular FRET ...

Precise measurement of interaction between the molecule and the
environment.
- (independent) of probe preparation
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Stochiometry ...

Measurement of conformational distributions in freely diffusing
single molecules.

> Usage of two DNA constructs with varying intramolecular
fluorophores showed the possibility to distinguish sub-ensembles.

Fig. 2. FRET Histogram of a sam- T ’ T ‘ T

ple containing a 1:1 mixture of 80- mixture of DNA 7 and DNA 14 3
two different double-stranded
DNA molecules with 7— and 14—
base pair (bp) separation be-
tween donor and acceptor. The
peak around zero results from
faster photobleaching of accep-
tors (compared with that of
donors), leaving donor-only-la-
beled molecules; the two peaks
at energy transfer efficiency £ ~
0.7 (14-bp separation) and E ~ 1
(7-bp separation) demonstrate
the ability to identify subpopu-
lations according to their confor- 0.0 05 10
mational states. FRET efficiency E

Events
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Possible applications of FRET ...
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Thank you for your attentionl
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